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Abstract—This paper proposes a new interpolation-based alge-
braic soft decoding (ASD) for Hermitian codes. The interpolation
is realized through basis reduction (BR) that is facilitated by the
re-encoding transform (ReT). The ReT is formulated by defining
Lagrange interpolation polynomials over the Hermitian function
fields and choosing proper re-encoding points. It transforms
the interpolation points, which can lead to a reduced BR
interpolation complexity. With a designed decoding output list
size (OLS), the interpolation module basis can be formulated. The
ReT results in polynomials of the module basis having a common
factor. It can be extracted from the polynomials, resulting in a
simpler basis reduction. An enhanced ReT is further proposed.
It enables the basis polynomials having a common factor with a
greater degree, yielding a more significant complexity reduction.
Numerical results show that both of the two proposed ReT can
facilitate the ASD for the advanced decoding of Hermitian codes.

Index Terms—Algebraic-geometric codes, algebraic soft decod-
ing, basis reduction, Hermitian codes, re-encoding transform

I. INTRODUCTION

Algebraic-geometric (AG) codes are linear block codes con-
structed based on algebraic curves [1]. AG codes compromise
a large family, including the widely used Reed-Solomon (RS)
codes, elliptic codes, Hermitian codes, etc. Among them, RS
codes can be considered as a special class of AG codes since
they are constructed from a straight line. But the length of an
RS code cannot exceed the size of finite field in which it is
defined, limiting its error-correction capability. Compared with
RS codes, general AG codes have larger codeword lengths,
leading to their stronger error-correction capabilities.

Similar to RS codes, AG codes can be decoded by the
syndrome-based decoding algorithms [2, 3]. They cannot
correct errors beyond half of the code’s minimum Hamming
distance. The Guruswami-Sudan (GS) algorithm can correct
errors beyond this limit by formulating the decoding as
a curve-fitting problem [4]. The GS decoding consists of
interpolation and root-finding, where the former dominates
the complexity. The interpolation can be realized by Kotter’s
interpolation [5] which constructs the interpolation polynomial
in an iterative manner. It can also be realized by the basis
reduction (BR) approach through treating the decoding as
computing a desired Grobner basis that contains the interpo-
lation polynomial. The Grobner basis can be obtained by first
constructing the interpolation module basis, and then reducing
it. The BR interpolation-based GS decoding was first proposed

for RS codes [6] [7]. It can be generalized to decode other
AG codes, such as Hermitian codes [8] and elliptic codes
[9] [10]. Although GS decoding can yield a better error-
correction capability, it still exhibits a high complexity of
O(I*n(n —k))! in decoding general AG codes [11], where
[ is the designed decoding output list size (OLS), n and k are
the length and dimension of the code, respectively. Addressing
this problem, re-encoding transform (ReT) was proposed to
facilitate the decoding of RS codes [12]. Recently, Wan et al.
generalized it into the decoding of general AG codes [11],
reducing the complexity to O(I*(n —k)?2).

The error-correction capability of GS decoding can be
further improved by utilizing soft information. By formu-
lating test-vectors and exploiting their similarities, the low-
complexity Chase (LCC) decoding was applied to decode
RS codes [13] and elliptic codes [14]. Recently, Liang et al.
proposed the LCC decoding of Hermitian codes, which is facil-
itated by the ReT-assisted BR interpolation and improved root-
finding [15]. The algebraic soft decoding (ASD) is another soft
decoding approach for enhancing the decoding performance.
By transforming soft information into the interpolation multi-
plicities, the ASD of RS codes was proposed by Kotter et al.
[16]. The ASD of elliptic codes was proposed by Wan et al.
[17], where the ReT was employed. Chen ef al. [18] and Lee et
al. [19] proposed the ASD of Hermitian codes through Kétter’s
interpolation and the BR interpolation, respectively. However,
they both exhibit an interpolation complexity of O(I%n7/3).
Moreover, the ReT has not yet been studied for the ASD of
Hermitian codes.

This paper proposes the ASD of Hermitian codes, for which
the interpolation is realized through the ReT-assisted BR inter-
polation. By defining Lagrange interpolation polynomials and
choosing proper re-encoding points, the ReT transforms the
interpolation points into having zero z-coordinates and makes
the module basis polynomials having a common factor, leading
to a simpler BR interpolation. An enhanced ReT is further
proposed to enable the module basis polynomials having a
greater common factor, which leads to a more significant
complexity reduction. Numerical results show that both of the
two proposed ReT facilitated ASD exhibit a lower complexity
than that without applying the ReT for Hermitian codes.

'In this paper, the “big-O” notations ignore the logarithmic factors.
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II. BACKGROUND KNOWLEDGE

This section presents the background knowledge of Hermi-
tian codes, the GS decoding and the ASD.

A. Hermitian Codes

Let F; = {00,01,...,051} denote the finite field of size
g. In this paper, g is a square as required by the definition
of Hermitian codes. Let IF4[X, Y] further denote the bivariate
polynomial ring defined over IF;. An affine Hermitian curve
defined over IF; can be written as [20]

Hy =YY +Y — X@tl 1)

where w = /g and the curve has a genus ¢ = M There
are w® affine points P; = (xj,y;) that satisfy Hy(xj,y;) =0,
and a point at infinity Peo. They form the set of Fj-rational
points at Hy. Let P = {P; = (x,y;) | Hw(xj,y;) = 0}
denote the set of affine points and |P| = w3. The coordinate
ring of Hy, is

R=F,[X Y]/ <Y'+Y—-X"">, 2)

Let x and y denote the residue classes of X and Y, respectively.
The pole basis £, comprises a set of bivariate monomials
¢a(x,y) = x*y'v. For a nonzero polynomial S € R, its order
at a rational point P is denoted as vp(S). Let vp, (¢, !) denote
the pole order at Px and vp_ (¢, ') = vp, ((xy?)1) =
w-iy+ (w+1)-i, 0 < iy < w and i, > 0. Mono-
mials of the pole basis exhibit an increasing pole order as
Lo = {¢alve, (9:7) < vp (¢, 1)} Let p =k +¢—1 and
L(pPs) is the Riemann-Roch space defined by y and Peo.
For an (n,k) Hermitian code, given a message polynomial

f(x,y) = fopo+ fig1 + -+ frm1Pr—1 € L(4Px), (3)

where fo, f1,...,fr-1 € IF; are the message symbols, the
codeword ¢ € IF;‘ is generated by

en-1) = (f(Po), f(P1), -, f(Pac1)), (4)

where {Py,Py,...,P,1} € P. Let [a : b] = {a,a+
1,...,b}, where a,b € Z and a < b. The index set of the
codeword is [0 : n — 1]. The Riemann-Roch theorem [21]
defines the relationship between y and vp, ((pk__ll) as

vp, () < . (5)
B. The GS Decoding

For GS decoding of an (7, k) Hermitian code, the following
definition is needed.

c = (cosc1, -

Definition 1: Let R|[z| denote the polynomial ring defined
over R. Monomials <pazb € R]z] are ordered according to
their (1, w;)-weighted degrees as

dengz%Zb = vp, (¢7 1) + w.b, (6)

where w, = vp, (4),;11) The (1,w;)-reverse lexicographic
(revlex) order can be established as follows. Given two
monomials g, z" and @a,z"2, ord(¢g,z") < ord(¢g,z"),
if degllwchalzbl < degllwzq)@zb% or dengZ(palzl =

degllwngazzb2 and by < by. Given a polynomial Q(x,y,z) =
Yo pen QuvPa(x,y)z", the (1,w.)-weighted degree of Q is
deg; ,.Q = max{degllwz(pazb | Qu # 0} and its leading
order is 1od(Q) = max{ord(¢az") | Qu # 0}.

In decoding an (n,k) Hermitian code, polynomials are or-
ganized under the (1, w,)-revlex order. Given two polynomials
Q1 and Qo, we claim Q7 < Qy, if lod(Q1) < lod(Q3).

Theorem 1 [8]: Given the polynomial © which has a zero
of multiplicity at least m over the n interpolation points, if
m(n—[{j | f(P) # w;,Vj € [0:n—1]}]) > degy,, Q.
Q(x,y, f) =0, or equivalently (z — f)|Q.

Interpolation constructs the polynomial Q. The z-roots of

Q are the estimated message polynomials. In the following,
the ASD will be further introduced.

C. The ASD and Its BR Interpolation

1) Reliability Transform: Assume that a Hermitian codeword
¢ is transmitted and r = (rg,71,...,75—1) is the channel
output. The reliability matrix IT € R7*" with entries 77;; =
Pr(r; | ¢; = 07) can be obtained. Parametrized by I, TT will
be transformed into a multiplicity matrix M of the same size,
where its entries 1;; is nonnegative integer and is considered
to be associated with the interpolation points (Pj,0;). Let i;
denote the index of o; that satisfies 0; = c;. The codeword
score of M is defined as

n—1
sml(c) = 2 Mij. @)
j=0

2) Interpolation and Root-Finding: Let mult(I;j,Ui)(Q) de-
note the multiplicity of polynomial Q at point (P;, ;). Given
M, the interpolation module Zys; can be defined as

IM,Z = {Q € R[Z} | mult(pj_lgl_)(Q) > mij and degZQ <lI
for0<i<g—-10<j<n-1}

With M, interpolation constructs the minimum polynomial Q
in Zyg; w.rt. the (1, w;)-revlex order. The following theorem
reveals the sufficient condition of a successful ASD .

Theorem 2 [19]: Given an (n,k) Hermitian code and the
interpolation polynomial Q € Zyy, if sm(c) > deg,, O,
Q(x,y, f) =0, or equivalently (z— f)|Q. ’

The interpolation polynomial Q can be determined by BR
interpolation. It first constructs a basis of the interpolation
module Zpg;, which will then be reduced into a Grobner
basis [8]. Its minimum candidate is Q. For the construction
of the module basis, a series of multiplicity matrices need to
be generated based on M. Let 7 = maxj{z?;ol m;;}. These
intermediate multiplicity matrices are denoted as M ") where
u=20,1,...,75. Let M) = M. The entries of M(Y) to M)
are determined by
(u) o 1,

oo (u) (u)
(1) _ M ifi = i and myj #0, &
ij ml(]'u), if i £ Z-](u) or ml(ju) _0,

()

where i} = arg maxi{ml(]-u)}.
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Definition 2: Given an index set J C [0 : n — 1], let
A(T) = {xj|j€ J} For o € A(T), let Bo(J) =
{yj | (y;) € P, je T} CGH ={j | xy = x;} and
S(J) ={j | IBx;(J)| = w}. The affine points defined by J
form a maximum semi-grid if |By, (J)| = w, Vx; € A(J).

Given an affine point index set J C [0 : n — 1], the
Lagrange interpolation polynomial defined by [J is written
as

X —a

y—B

weA\ () T T peby (TN (y ¥ TP

Ly;(x,y) = 9
Note that L7 ;(P;) = 1 and Ly7;(Py) = O, if j #
j', where j,j’ € J. Let w](u) )

( (u) () (u)

Wy ',y -

= U'l,(u) and 7(u =
j
1)- We define the following polynomial

‘ [oz 1 " Ligan1)(x,9).
j€10n—

L, W

K w(x,y) = (10)

Note that K ) (P;) = w](”). Let m](-”) = maxi{mgl)}. Let

Epw be anideal in Rand Eyy) = {S € R [vp(S) = m](”)}_

The elements of Zy;; can be obtained using the elements of

Evw and the polynomial K ) [19]. In order to compute

Evp(w)» indices of the w® affine points need to be reassigned

by grouping them into w? classes of different x-coordinates.

Thus, P is reassigned to P, with a = Lj/uzj)and b=j
u

mod w. If the point P; is reassigned to Dy p, Vop = m](u). It

is also assumed that for each 0 < g < w? — 1, index b has
been arranged such that vlg”h) are written in a decreasing order

as

> U(”)

(u) > (u) > .
> .. aw—1

Z]u,() = va,l

(1)
Given B{") € IF,[x] and it satisfies vp , (y — BI")) > o) —
(u) . ’ , ’

U, » we further define the following polynomial

-1 (w) y
Tue(xy) = [J(x—a)® ] @-BY), 2
a=0 0<b<c—-1

where 0 < u <7 and 0 < ¢ < w — 1, as the basis polynomial
of &y - The following theorem finally defines the module
basis construction for Zyy ;.

Theorem 3 [19]: Typ; can be generated by

u—1
M= {Mu,c | Mu,c = Tu,c H<Z - Kw(’))}'

r=0
The Mulders-Storjohann (MS) algorithm [22] can be applied
to reduce M into a Grobner basis, in which the minimum
polynomial is chosen as the interpolation polynomial Q. After-
wards, the estimated message polynomial will be decoded by
finding the z-roots of Q. This can be realized by the recursive
coefficient search (RCS) algorithm [23, 24]. If multiple z-roots
are found, the one whose corresponding codeword has the
minimum Euclidean distance to w is chosen as the decoding

output.

13)

III. THE RET-BASED ALGEBRAIC SOFT DECODING

This section further introduces the ReT facilitated ASD, for
which the interpolation is realized through the BR approach.
We begin with the interpolation points transform.

A. Interpolation Points Transform

The ReT realizes its interpolation complexity reduc-
tion through transforming the interpolation points. The z-
coordinates of some interpolation points will be transformed
into zero, resulting in the module basis polynomials share a
common divisor. These interpolation points are called the re-
encoding points. The common divisor can be removed during
the basis reduction, leading to a reduced complexity.

Let I' denote the index set of re-encoding points. The re-
encoding points are denoted by Pr = {(P;, w}o)) | jeTl}
The re-encoding polynomial is further defined as

0

Kf(X,]/) = Zw]( )LF,]'(X,]/>.
jer
Lemma 4 [15]: If |I'| < w|(k—g)/w]| and S(I') =T,
Kr S E(yPoo)
Based on (14), the re-encoding codeword is generated by
b= (Kr(Po),Kr(P1),...,Kr(Py-1))
= (hOI hl/ e /hnfl)'

Note that h; = w}o), Vj € I'. Consequently, the multiplicity

(14)

15)

matrix M can be transformed into M. The interpolation points
(Pj, 0;) are transformed into (P;, 07) as

(Pj,(?'i) — (P],O';) : O'lf =0; — ]’l] (16)

Let M(u) denote the intermediate multiplicity matrices w.r.t.
M. Their entries, denoted by Wf.”), can also be generated
through the process defined by (8).

Let us further define the following polynomials

(0)

Gx)= J[ (x—oq) e (17)
oa€A(T)
and
Gr(x)= [] (x—ou). (18)
o, €A(T)

In order to show G is a common divisor of the basis polyno-
mials, we define

L :{] | wz(;ll)j/wj+b = hw[j/wj—&-brj er,

(19)
Vbe[0:w—1]}.
Based on I, we further define
Gr(x)= J] (x—oa) (20)
oa€A(Ty)
and
G, (x) = H (x — 0u). 2n
o €A(T\I,)
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Polynomial G can be factorized into Gr(x) = Gr, (x) -
Gr\r, (x). Note that G satisfies

U
G=]]Gr.
u=0

Let ﬁ}u) = max; {Wl(ju)} and gM“‘) ={SeR |v(S) =

(22)

ﬁ(.”)}. The following Lemma reveals that G is a common
divisor of the basis polynomials of IM,I'

Lemma 5: 1f Q(x,y,z) € Iz, G|Q(x,y,2Gr).

Proof: Let He ]('u) = O and

]

z() = (z(()"),zgu),. ) .,ziu_)l). Since Q(x,y,z) € Tyt Q can
be generated by

= argmaxi{ml(;‘)}. Let z

-

u—1

ﬂ = {Mu,c ‘ Mu,c = Tu,c : H (Z - KZ(,))},
r=0 B

(23)

where Ty is the basis polynomial of gﬁ(‘” »and K () is
(r)
Y. %z Lpa-1,
j€[0:n—1]

0<u<nand0<c<w-—1. Foreach My(x,y,zGr), it
can be expressed as

K. (xy) = (24)

u—1
M, c(x, y,sz) =Tyc- H(ZGF - Kz(v))-
r=0 -

(25)

. [C) R— _
Since [Ty, e (jo:n—17) (x — 0a) %=1 [Tue, TT=u Gr, | Tuc-
Polynomial K ;) can be written as

Ko=) 0L+ Z](‘r)L[O:n—l],j

jely jelo:n—1\I;
0
] X —n
= Grr .
jelon g CF 5 aea (om-1\ ) ) 5~ %
y—B
peBy (0 T\ () ¥ P
(26)
Therefore, [1“_; Gr,|IT'Z (zGr — K»). Since G =
Y3 Gr, - TT/=u Gr,» G|Q(x,,2Gr). 0

It can be seen with more re-encoding points, a greater
common factor will be obtained. In order to maximize the
complexity reduction brought by the ReT, we have

I = wl(k—g)/w].

Moreover, points of Pr should correspond to larger multiplici-

27

ties. By sorting 05102171 in a descending order, a refreshed index
sequence of x-coordinates ap, a1, ...,4,—1 can be obtained. It

L (0) (0) (0)
indicates v, " 1 > Vg g > 2V g

of Pr should correspond to the first |I'|/w of these ordered

The index set

x-coordinates. Therefore,
r={jlj=a+b0<i<|(k—g)/w| -1,

0<b<w-1}. %)

B. The Modified BR Interpolation

As described in Lemma 5, polynomial G becomes a com-
mon divisor of the module basis polynomials. Accordingly,
the common divisor can be extracted from the module basis
polynomials, resulting a module isomorphism. Let & denote
the isomorphic module w.r.t. IM,Z' The module isomorphism
between Zyz,; and P is

IM,I — d
z

_ ~ ~ 29
Qlx,9,2) = 60(x,y, &) = Olx,v,2). 29

The isomorphic module & can be generated as an IF;[x]-
module by

. _ _ _ u—1 _
M = {Mu,c | My =Ty - H(ZGF\F, - Kg,)}/ (30)
r=0
where 7 ( )
To(x,y) = e\ y) 31
,C(x y) HZ:u GF, (x) ( )
and
(r)
= Zj X—a
K (x,y) = :
: jelom—1\TI; Gr, (%)) weA(0m—1\)\ {x;} YT~ &
, y—B
peBy, (0a— T\ ;) ¥ ~ P
(32)

Based on (30), we can first construct the isomorphism of
modulewbasis, and then reduce it into a Grobner basis, ilrom
which Q can be retrieved. It will then be restored into Q by

Q(x,y,2) = G- é<x,y,%(x>>.

Note that Q is the minimum polynomial in ® w.r.t. (1,w, —
|I'|)-revlex order. Afterwards, the RCS algorithm will be
applied to find the z-roots of Q. Let ]7 denote the z-roots
of Q. The estimated message f will be obtained by

fay) = flxy) +Kr(x,y).
C. Complexity Reduction

(33)

(34)

This subsection analyzes the complexity reduction brought
by the ReT. We first consider the basis construction complex-
ity. Without the ReT, the complexity of computing T}, and
K ) are O(Pn?w) and O(In?), respectively. With the ReT,

the complexity of computing T, . and KZ(,) are O(PPn(n —
IT|)w) and O(I(n — |I'|)?), respectively. Hence, with the
ReT, the basis construction complexity is characterized as
O(Pn(n — |T'|)w). The ReT attributes to a reduction factor
of 1—(n—1T|)/n.
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We further consider the BR complexity that dominates
the interpolation. With the MS algorithm, the BR complex-
ity is mainly determined by the x-degree of the maximum
polynomial in the module basis [25]. Since the common
factor is extracted, x-degrees of the polynomials are reduced.
Hence, the BR complexity are characterized as O(I°n7/3)
and O(I°(n — |T'|)?1'/3) in the cases without and with the
ReT, respectively. Therefore, the ReT can also reduce the BR
complexity by a factor of 1 — (n — |I'|)>/n?. Hence, it is
important to maximize the number of re-encoding points.

IV. THE ENHANCED RE-ENCODING TRANSFORM

As mentioned above, if more re-encoding points are chosen,
the ReT can reduce the interpolation complexity with a greater
common factor. However, the sufficient condition in Lemma 4
limits the maximum number of P to w| (k — g) /w]. It should
be noted that even |I'| > w|(k — g)/w], it is still possible
that K € L(yPs). In this section, we propose an iterative
approach to formulate a larger index set of re-encoding points.
For this enhanced ReT variant, their index set and the re-
encoding codeword are denoted by Py, I'" and I/, respectively.

Let us initialize I'" as I” = S([0 : n — 1]). The re-encoding
polynomial K is computed by

Kri(x,y) = ) W}O)Lr',j(x,]/)‘
jer’

(33)

If deg; w, Krr < p, ie. Kpv fall into the desired Riemann-
Roch space, /i’ will be generated by

h/ = (Kf/(PO)/KF/(Pl)/' . -/KI”(Pn—l))
= (ho 1, Ty ).
It will be applied for transforming the interpolation points as
in (16). Afterwards, I'” will be applied for the module basis
construction. If degy ., Krr > p, I’ " should be updated. Let
7Ij/~ = max;{7t;} and j = argminj{n]’-}, where j € I'”. The
index set I'" will be updated by

I'=r"\c(j'),

(36)

(37

and the Lagrange interpolation polynomial will be updated by
X i X i

Lrj=Lpj- (38)

x—xj/

The polynomial Ky will be computed again and checked if
deg; . K < p. This iterative formulation of I " terminates
if any of the following conditions occurs:

1) deg; ,, K < 3
) I < w|(k—g)/w];

3) Zjef v([?;wj,wfl = Z]'GI” UT_(]‘)}wj,wfl'

If 1) occurs, it indicates that a valid I has been generated.
Hence, the interpolation points transform and the BR interpola-
tion will be proceeded. The conditions 2) and 3) both indicate
that the common divisor generated by I’ has a lower x-degree
than the one generated by I'. Under these conditions, I" will
be applied for the ReT and the subsequent BR interpolation.

The following Section V shows the numerical effect brought
by the ReT and the enhanced ReT for the BR interpolation.

V. NUMERICAL RESULTS

This section shows the complexity of the proposed ASD
algorithms. The ASD with the ReT facilitated BR interpolation
and that with the enhanced ReT facilitated BR interpolation are
marked as ASD (ReT-BR) and ASD (E-ReT-BR), respectively.
Complexity of the prototype ASD [19] (marked as ASD (BR))
is used as the benchmark. The complexity was measured as
the average number of finite field multiplications. They were
obtained over the additive white Gaussian noise (AWGN)
channel using binary phase shift keying (BPSK) modulation.

TABLE I
COMPLEXITY INSIGHTS OF ASD ALGORITHMS OF THE (64, 47)
HERMITIAN CODE WITH [ = 4 AND SNR = 8 dB

. Basis Basis Root
Algorithm ReT Construction Reduction -finding Total
ASD (BR) - 6.14 x 10° 5.51 x 10° 7.61 x 10%|1.17 x 10°

ASD (ReT-BR) [3.90 x 10% 1.35 x 10° 2.57 x 10° 6.65 x 103|4.02 x 10°

ASD (E-ReT-BR)|1.11 x 10* 4.89 x 10* 9.14 x 10* 1.15 x 103|1.53 x 10°

TABLE II
ASD COMPLEXITY AT DIFFERENT SNRS IN DECODING THE (64,47)
HERMITIAN CODE

SNR ASD (BR) ASD (ReT-BR) ASD (E-ReT-BR)
Wy 1—a | 1=2  1=4 | 1=2 1-4
4 |4.65 x 10° 5.19 x 10°|2.62 X 10° 2.96 x 10°|2.94 x 105 3.00 x 10°

6
8
10

3.82 x 10° 3.08 x 10°
2.00 x 10° 1.17 x 106
1.17 x 10° 4.99 x 10°

1.97 x 10° 1.28 x 10°
1.07 x 10° 4.02 x 10°
6.52 x 10* 1.34 x 10°

1.91 X 105 1.15 x 10°®
5.74 X 10* 1.53 x 10°
3.66 X 10* 4.54 x 10*

Table I shows the complexity insights for the three ASD
algorithms in decoding the (64,47) Hermitian code with the
decoding OLS | = 4 and a signal-to-noise ratio (SNR) of
8 dB. Although there is an additional cost for the ReT,
both of the two ReT facilitated ASD algorithms exhibit a
lower complexity than their prototype ASD. By yielding a
greater common factor for the basis polynomials, the enhanced
ReT results in a more significant complexity reduction. The
ASD (E-ReT-BR) exhibits the lowest interpolation complexity.
Table II shows the decoding complexity at different SNRs. The
table emphasizes the best performing ASD in grey shapes for
each set of [ and SNR. For the ASD (E-ReT-BR), in low
SNR, it is difficult to generate an improved set of re-encoding
points, i.e. I''. But there is an additional cost in checking
if K € L(Pw), resulting in a slightly higher complexity
than the ASD (ReT-BR). However, as the SNR increases, it
is more likely to generate an improved set. The ASD (E-ReT-
BR) hence yields the lowest complexity.
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